If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+30x-117=0
a = 4; b = 30; c = -117;
Δ = b2-4ac
Δ = 302-4·4·(-117)
Δ = 2772
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2772}=\sqrt{36*77}=\sqrt{36}*\sqrt{77}=6\sqrt{77}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-6\sqrt{77}}{2*4}=\frac{-30-6\sqrt{77}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+6\sqrt{77}}{2*4}=\frac{-30+6\sqrt{77}}{8} $
| (5/3)m=70 | | (3/8)m=-24 | | 8(2x-5)=16x-36-x | | 2(y÷3)=20 | | 3y÷8=27 | | 2(l)+3(4l)=990.50 | | 4(v-2)-8v=24 | | 15=3x/5-3x | | 112-(5x+5)=5(x+6)+x | | 2(x+3)=(4x-1)÷2+7 | | y^2-10=5 | | x+7^2=-192 | | x=13/12 | | 1/8(2p-1)-7/3p-p-4/6=0 | | (x+10)*15=15x+150 | | 35-18x=18 | | -2/7x+6+1/7=18 | | 7=-3/5t-2 | | 3x^2-35x+78=0 | | 3x^2-35+78=0 | | 7m-2/3=11 | | 6x^2-70x+156=0 | | 2r²+11r-216=0 | | 45(2)+20y=280 | | 45(4)+20y=280 | | 45(5)+20y=280 | | 6x+4-3x+2=12 | | 4x^2+12x+9=625 | | x²+4x-8=-18 | | x+12=13x | | n(6+11n+3n2+3n2+n3)(4+n)=0 | | 101.25+.25x=x |